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DESIGN OF REGENERATORS FOR HEAT TRANSFER FLUIDS WITH VARIABLE
THERMOPHYSICAL PROPERTIES
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Theoretical formulas are obtained for determining the heat transfer surface of a regenerator in the case of
the heat capacity of one of the heat transfer fluids, and also the heat transfer coefficient varying substan-
tially through the equipment. The effectiveness of the results is illustrated by concrete examples.

In many cases of heat transfer between fluids taking place in regenerators, the physical properties of the heat
transfer fluids vary so much that appreciable errors result from inserting into the theoretical formulas values averaged
over the temperature range. In the most general case, not only the heat transfer coefficient, but also the heat capacity
of the fluid are functions of temperature. The Altenkirch [1] method is then recommended, according to which

'f
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‘ :
Calculations based on (1) may be performed by either numerical or graphical integration, a laborious operation
involving evaluation of the heat transfer coefficient for various temperatures, as well as determination from tables of
appropriate values of the specific heat. It should be noted that in a number of cases (close to the critical state) these

values should be determined using i~-T diagrams.

In this situation, it is natural that a number of investigators should have attempted to develop analytical methods
that would permit allowance to be made for changes of the physical properties of the heat transfer fluids during heat
transfer. One of the earliest methods is that proposed by Shak [2], based on an assumed power law of the type

k=a-- bF, (2

it being recommended that the exponenet is determined experimentally. This considerably complicates the application
of relation (2) to equipment design. In the special case n =1 the calculation reduces to introducing an arithmetic mean
value of k for the ends of the apparatus.

The method proposed in [3] is based on the assumption of a linear dependence of the heat transfer coefficient on
the temperature of one of the heat transfer fluids

k=a-bt". 3)
This assumption, along with the assumption that the specific heat is constant, leads to the relation
Q ki (A D¢

== [ki(AD)g — ks (A f)i][m M} ’

which agrees much better with the exact formula (1) than does the usual Grashof formula.

(4)

In cases when the heat transfer coefficient is practically constant, but there is a substantial variation of specific
heat, apart from (1), graphical methods are recommended, based on the use of i-T diagrams [4, 5] for those sub-
stances for which such diagrams exist. An analytical examination of the variation of specific heat was made in [6],
but, because of an incorrect assumption, * the design formulas obtained require revision. However, as noted above,
in practice we may encounter a simultaneous appreciable variation of specific heat and heat transfer coefficient. The
following discussion is devoted to an analytical examination of this case. We shall restrict our consideration to steady
parallel flow of two heat transfer fluids, heat transfer between which is described by the system of equations [€]

tl —_ t” __“t W? dt
ks dx
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*This error was kindly brought to the author’s attention by K. D. Voskresenskii.

89



where the minus sign refers to the counterflow case.

In these equations k is a variable and may be assumed, as will be shown below, to be a function of the tempera-
ture of one of the heat transfer fluids, e, g., t". The water equivalent W, of one of the fluids is also a function of t",

In general, variation of the specific heat of not one, but both fluids is possible. In practice, however, it is met
rather seldom and will not be examined here, aithough to obtain a solution for this situation is not difficult in principle.

Going to a dimensionless representation, using the notation

kiky = @ ('), cofcyg = WolWoo = 4 (F') (6)
and replacing system (5) by one second-order equation, we obtain
&t o d(lnyfe) d | dt
- R —— £ O. 7
dv; + [QP -y T dv, | dv, ™

In (6), ko and cyy are fixed values of these factors at one end of the regenerator. 1f we assume that ky and cg re-
late to the section where heat transfer fluid II enters the equipment, then ¢(t}) =1; ¥(tj) = 1.

The boundary conditions for (7) will be:
for parallel flow

Y . dt” _ . .
om0 = 33 do, om0 Rup (13 — £)); ®
for counterflow
” . dt" = 4 i
Plojmo =17 dv, u:vﬁ_R”(tf_ti)’ ®

X 7"

assuming that fluid II flows in the negative x direction. Following the substitution — = p, Eq. (T) becomes

Uy
dt’ at’ P
and, in accordance with (8) and (9), its solution
ar :
p= = s R 4], an
du, b .
must satisfy the boundary condition
Plir=r = Ryt —1) (12)
i i i
for parallel flow and
Plo=tr = — Rya (£’ — 1) (13)
. i f "1

for counterflow.

From (11), using (12) and (13), we may determine, for the two cases of direction of flow of the heat transfer
fluids

) bio)dt”
U= (v/e) for parallel flow,

G
[ 4dF + Rt — )~ R (6, — 1)
7

., 14)
0/0) dt (
U = (¥/9) o for counterflow,

) Rull—f) =Rt =) — [4dr

t t

f i

if the form of functions ¥(t") and ¢(t") is known.
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The ratio of the heat transfer coefficients will be

k 3 3 . ,
L )
R kO 7\, alo . [« 2 )\ al “10
The heat transfer coefficient for turbulent flow in tubes may be written in the form
q = A 7\/0'6 (Cp/P‘)O’4 (15)

and therefore

« Ao \0-6( p \04 /¢ 04

I (__0_ __) pe j _ (16)
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P

If the heat transfer fluid is a gas, the ratios of thermal conductivities and viscosities may be replaced by their ap-
propriate temperature dependences [7, 8] With respect to the dependence of specific heat on temperature, the form
usually given is a polynomial. For the problem discussed here, for convenience of later calculation, we put the specific
heat dependence in the same form as that assumed for viscosity and thermal conductivity, i.e.,

CplCpy = (T/Ty)P. an

This relation was checked against data presented in [10], and it was found that over quite a wide range of tempera-

ture it gives errors not greater than a few percent (table). In view of the fact that in (16) the ratio of specific heats has

the exponent 0. 4, this error is quite acceptable.
Values of the Exponent p is (17) for Some

Gases and Vapors at a Pressure of 10° N/ m? ‘ Thus, Instead of (16), we obtain
Gas p (Temperature| Error ‘ 4, T \0-4m-—0.4p—0.6n
range My =
a % @ ( T, >
Methane 0.59] 0--500°C 6
Sulfur 0.18] 0—800°C 4 { T —T, \0-4m—0-4p—0.6n
anhydride =\t
0

Ammonia |0.31} 300—600°K | 3

~where m and n are the exponents in the temperature relations
for the viscosity and thermal conductivity of the gases.

Propane | 0.92| 250—600°K| 4

Ethyl 0.73] 100—600° C| 1 If for design purposes, the regenerator is divided into
alcoliol sections, in each of which the ratio (T — T¢)/ T is sufficient-
Air ]O. 19'500——20000 Kl 7 ly small, then the last expression may be linearized, i.e.,
a . 04m —04p—06n .-
Sl Tp (T =To) = 1 +bg(T —To).
0

1t will be shown below that the number of such sections is not more than two, even in cases of strong variation
of the heat transfer coefficients and specific heats along the length of the equipment.

1f the heat transfer fluid is a liquid, the variation of the right side of (16) will mainly be determined by the
temperature dependence of the viscosity, since the product )\°~6cg~4 changes little with temperature, For example, for
water in the range 200-350°C, the product 7»0'663"’ changes by 7%, for ethyl alcohol in the range 78, 4-231.5° C — by
1%, for diphenyl mixture — by 1% (100-300°), and for tetracresyloxysilane — by 15% with temperature change from 100

to 300°C.
According to the Andrade theory [9], the viscosity of a liquid is related to its temperature and density by

p = Apsexp (BoT).

Taking account of the small dependence of density p on T, and replacing it by its mean value py, we obtain, in place
of (16) '

, exp{ 0.4Bpy

i (T——m] .



Restricting our attention, as with gaseous heat transfer fluids, to a section of the equipment in which the exponent is
sufficiently small, we obtain the following approximate relation:

a, 0.4Bppy
— =]+ ———- (T —=Ty)=14b —T,).
. T ( 0) +b,(T 0) (18)

The approximate nature of this result is due, apart from the basic assumptions, to the fact that b; was written
in (18) as a constant, although it depends on temperature; it is therefore desirable to give it the value by, , correspond-
ing to (T + Tg)/2.

Thus, the dependence of ay/a may be represented in the first approximation as a linear function of the difference
between the temperature of the heat transfer fluid at the inlet to the equipment and the variable temperature.

Using the equilibrium equation t' = t% = Ryy (th — t'), which will be sufficiently accurate on a limited section of

the heat transfer surface even in the case of variable specific heat, we obtain:
_k_ — 1 b — by — (920/a19) by Ry
ky 1—0{tb—1" 1+ dag9/h - 299/,

(19)

Comparing (19) and (3), we see that for small values of b(tj — t"), both expressions will give practically iden-
tical results. Relation (19), however, more correctly reflects the physical picture of heat transfer when the thermo-
physical properties of both media vary.

The second equation of (19) allows us to obtain the condition for a constant heat transfer coefficient. This cor-
responds to b = 0, i.e., by/by = apgRp/ 0y In examining the temperature dependence of the ratio of water equivalents
or specific heats cg/cyp, we assumed a linear relation of the form

Cg/CQO =1 a(ts —_ t”), (20)

which is a first approximation for the quadratic polynomial in temperature that describes the variation of the specific
heats of liquids and gases.

Expressions (19) and (23) are a form of the functions ¥ and ¢ defined by (6) and entering into (14).

Substituting (19) and (20) into (14) and integrating, we obtain a formula for calculating the heat transfer surface
that takes into account the simultaneous variation of the specific heat and heat transfer coefficient with temperature;

oo RIE L9 (1_,k_i) T [1 —(1 f;Qng)M]In{—l—[,B——

W, kf 1 — cof/eqi g
1 1 —k;
— 1 g Ra (1 B0 (0 R (12 2R LR e
2 Coi | % I —coficy g

-"_‘Rw[l-i,-.?,?)( —ﬁ“)]}]n 1 £ Ry (l—%)—28 ’
ke ) 1 Ry (1 4+0)— 28

where for parailel flow the upper sign should be taken and

£ — .
p= -t—”l.:—_;?’ v= V(R + 1F — 2R, B (1 —Cofeaf) (22)
i
and for counterflow — the lower sign and
f— , 9
= T___.Tf y 2=V (Ryg— 1P +72R ;5 B(1 — caf/Ca) - (22a)
1

In substituting numerical values in (21), it should be noted that the quantities k; and c,j relate to the section
where the heat transfer fluid with variable specific heat enters the equipment.

Formula (21) is not valid for all cases of heat transfer, as can be seen from an examination of the inte grals in (14),
after substituting values of ¢ and ¥ from (19) and (20). If cpf/cyi = 1 in parallel flow or cyf/cyi =< 1 in counterfiow, ~
Eq. (21) is applicable. These conditions are very rigorous. In addition, Eq. (21) is also applicable when the inequality

Cof/Cai << 1+ (1 £ R1)* 2R, 3, (23)



is fulfilled, which occurs when Ry, — = (Ry; = 0), i.e., when the temperature of the heat transfer fluid I does not vary

along the heat transfer surface.
However, if
Cofftaiz> 1+ (1 £ Rp)* /2 Ry: B, (237

then Eq. (21) is unsuitable, and in this event from (14) we obtain

W, ks
-1 V —ki/kf | 1T
Fil—(142R,) — R 1l 2 g
L ( 12) 1'_sz/cz.i_! n{ rrj [B
—17F ‘“I“R21<1+ _ef )]}: (24)
9 y
+ = {1 + Ry (i + 2R;) 1 Ck;jff -
— o 21
%

7 ng[l +25( «—%)]}arctg

1 FRL(28—1)

where

=V £ 2R, B (cag/eas— 1) — (11 Rpa)?.

Let us examine some special cases.

The temperature of the heat transfer fluid with constant specific heat does not vary along the heat transfer surface
(Ry; = 0). In this case instead of (21) and (24) we obtain

1 .
u=kil/Wyi= (1-—kifkg) + (1 — caf/Cg1) -+ ?(1 —ki/ke) (1 — (25)

— Caf/Co) (1 — 28) + (1 — B (1 — Ry/e )T — B (1 —
— oof /o)) In [(A 6)i/(A F5)].
If k = const, then
U= 1-—0Cof/Coi +[1—B (1 —co/cap) IN[(A D) (A B)g). (25
if cp = const, then
w=1— kyfkg + [1 — B(1 — ky/kg)] In [(ADi/(AD)]. (25")

The heat transfer coefficient varies little along the heat transfer surface (k ~ const). In this case instead of (21) we

obtain

o= % Infm |81 F - Rull i) 1=

(26)
Ry | 1=2 + Ry(l—)
and instead of (24) * I—28 + Ryp (1 + %)
o= % Inf-- g 1B 1 ¥ Ra + aatfeat)]| —
~ 2Ra g ! D
* T+ Rp(28—1) ’

where cyi corresponds to the value of the specific heat at the inlet to the apparatus.

The specific heat varies little along the heat transfer surface (cp & const). When cpf = cyi, (21) and (24) give an in-

determinate form of the type ® — «, on expanding which we find
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U=+
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1+ Ry kg 1 + Ry

el

where k; corresponds to admission of a fluid with initial temperature t{, which should be bomne in mind when calculating
the parameter 8.

When Ryy = 1 for counterflow, by expanding the indeterminate form in (28), we obtain

Calculations show that in using (21), (24) etc. there is, in most cases, no need to divide the heat transfer surface
into sections, and with sufficient accuracy we may confine our attention to data on the values of the heat transfer co-
efficients and specific heats at the ends of the equipment. In important calculations it may be justifiable to divide the
surface into two parts, having calculated the heat transfer coefficient for an intermediate section of the equipment; if
the result then differs only slightly from that obtained by calculating the heat exchanger as a whole, further subdivision
of the heat transfer surface will not be necessary.

Let us illustrate the effectiveness of the proposed method by two examples.

I. The high-temperature heat transfer fluid tetracresyloxysilane is used for evaporating a liquid at t' = 100°C.

The temperature of the fluid at the outlet is tf= 105°C, and the temperature at the inlet tj = 300°C, is such as
to avoid decomposition [11]. The enthalpies, heat flux, and specific heats comesponding to these temperatures are, re-
spectively, if =9.11 « 10° joule kg, i’ = 2.21+10° joule/kg, Q = Gy(9.11—2.21)-10° = 6.9010° G, watt, and cyj =
= 4, 65+10% joule/kgedeg, cyf = 2.52+10° joule/ kgedeg. Since the thermal resistance of the boiling liquid and the
wall may be neglected, the heat transfer coefficient will be given by (15).

Let us assume that the quantity A, which depends on the mass flow rate of the fluid and the tube diameter, has
been determined and that k; = 1000 W/ m? e deg; then kg = 407 W/m? +deg, which follows from (15) if we assume the
thermophysical properties are evaluated at 105°C.

Thus, in the example given we have a change in the specific heat and heat transfer coefficient by a factor of two
or more, Since the temperature of the boiling liquid is constant (Ry; = 0), formula (25) should be used, from which we
obtain, after substituting numerical values, k;F/Wyi = 4. 21 whence F=19.5 G, m?,

The exact solution obtained by graphical integration of (1) gives kiF/Wzi =4.47, i.e., a value 6% higher, which -
is not significant, since this difference falls within the limits of accuracy of the determination of the heat transfer co-
efficient.

1f (4) is used, we obtain F = 25.2 G,, i.e., a value 229 greater than that given by the exact solution, This differ-
ence would be even larger if the specific heat remained unchanged.

II. This example is borrowed from [4]. In a counterflow apparatus there is heat exchange between air at G, =
= 28 m/sec and p = 80, 10° N/m* and nitrogen at p = 1. 2+10° N/m®

The air temperatures are = = 803°K; tf = 1565°K, and those for nitrogen t] = 80. 3°K; ty = 298°K, We find the
specific heat of air at the ends of the apparatus by numerical differentiation with respect to the i~T diagram: cyj =
= 1,12 » 10® J/kg * deg, cyf = 3,42 * 10° J/kg + deg.

We find Wy; ='3190 W/deg. Corresponding to the given thermal flux Q = 6300 W we find W, = Q/At' = 6300/218 =
= 28.9 W/deg and Ry = 3190/28.9 = 110. 5. From (22) we determine B = 0. 0338, We verify that (28) is satisfied. From
(26), neglecting the second term because in this case, it is small, we obtain v = 8. 77, whence kF =28.9 X8 77 =
= 254 W/deg. The accurate, but laborious method described in [4] gives the result kF = 280 W/deg, i.e., the discrep-
ancy is 10%, although the change in specific heat is very considerable (cyf/cqi = 3. 06).

These examples indicate that in the range of variation of k{/k; and cf/c,i encountered in practice, use of the
recommended formulas should give quite acceptable results without recourse to zonal heat transfer calculations; this
becomes expedient when kg/k; and cpf/cy; vary by more than a factor of three, but even then it is sufficient to divide
the equipment into only two zones.
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NOTATION

F.—

heat exchange surface; W — water equivalent of heat transfer fluid; At — temperature difference of heat trans-

fer fluids; k — heat transfer coefficient; s— perimeter of surface; Ryy = 1/Rpy = Wy/Wy vy = kiF, /Wy v = value of v,
corresponding to total heat transfer surface, Subscripts: 1 and 2, and ' and " refer to the first and second heat transfer
fluids, i and f to the sections where the fluids enter and leave the equipment, 0 to one of the ends of the equipment,
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